An optical coating like no other

Nanowerk  February 5, 2021 An international team of researchers (USA – University of Rochester, Case western University, Italy) applied a 15 nanometer-thick film of germanium to a metal surface resulting in a surface capable absorbing a broad band of wavelengths. Combining it with a cavity that supports a narrowband resonance resulted in coupled cavities that exhibit Fano resonance that can reflect a very narrow band of light. The semi-transparent Fano resonance optical coationgs (FROCs) can transmit and reflect the same colour as a beam splitter filter. FROCs can spectrally and spatially separate the thermal and photovoltaic bands of the solar spectrum, […]

Quantum effects help minimize communication flaws

EurekAlert  February 10, 2021 Both quantum computation and quantum communication are strongly deteriorated because quantum superposition state can be destroyed, or entanglement between two or more quantum particles can be lost. An international team of researchers (Austria, UK, Hong Kong, Switzerland, France, Canada) experimentally and numerically compare different ways in which two trajectories through a pair of noisy channels can be superposed. They observed that, within the framework of quantum interferometry, the use of channels in series with quantum-controlled operations generally yields the largest advantages. The results contribute to clarify the nature of these advantages in experimental quantum-optical scenarios and […]

Quantum systems learn joint computing

Phy.org  February 5, 2021 The big challenge in quantum computing is to realize scalable multi-qubit systems with cross-talk–free addressability and efficient coupling of arbitrarily selected qubits. Quantum networks promise a solution by integrating smaller qubit modules to a larger computing cluster. Such a distributed architecture, however, requires the capability to execute quantum-logic gates between distant qubits. An international team of researchers (Germany, Spain) experimentally realized such a gate over 60 meters. They employed an ancillary photon that they successively reflected from two remote qubit modules, followed by a heralding photon detection, which triggers a final qubit rotation. They used the […]

Scientists create armor for fragile quantum technology

Phys.org  February 8, 2021 Integration of TMDCs into practical all‐dielectric heterostructures hinges on the ability to passivate and protect them against necessary fabrication steps on large scales. An international team of researchers (Australia, Germany) has created the protective layer by exposing a droplet of liquid gallium to air, which immediately formed a perfectly even three nanometers thick layer of gallium oxide on its surface. By squashing the droplet on top of the 2D material with a glass slide, the gallium oxide layer can be transferred from the liquid gallium onto the material’s entire surface, up to centimetres in scale. Because […]

Silicon waveguides move us closer to faster, light-based logic circuits

Phys.org  February 8, 2021 Wiring up the transistors of an optical circuit with silicon waveguides is an important requirement to make compact, highly integrated chips. However, silicon is a strong absorber of visible light. To circumvent the absorption issue researchers in Switzerland used high contrast grating consisting of nanometer sized “posts” lined up in such a way that light passing through the posts interferes destructively with light passing between posts making sure that no light can “leak” through the grating. Most of the light gets reflected inside the waveguide. They showed that there was a loss of only 13 percent […]

UMass Amherst team helps demonstrate spontaneous quantum error correction

EurekAlert  February 11, 2021 Existing demonstrations of quantum correction codes (QEC) are hardware intensive and prone to introducing and propagating errors. A team of researchers in the US (UMass Amherst, Northwestern University) encoded a logical qubit in Schrödinger cat-like multiphoton states of a superconducting cavity and demonstrated a corrective dissipation process that stabilizes an error-syndrome operator, the photon number parity. Implemented with continuous-wave control fields only, this passive protocol protects the quantum information by autonomously correcting single-photon-loss errors and boosts the coherence time of the bosonic qubit by over a factor of two. QEC is realized in a modest hardware […]

Top 10 Science and Technology Inventions for the Week of February 5, 2021

01. Quantum tunneling in graphene advances the age of terahertz wireless communications 02. Researchers create origami-inspired satellite antennas that can self-fold 03. Researchers create novel photonic chip 04. Researchers demonstrate the potential of a new quantum material for creating two spintronic technologies 05. Researchers design next-generation photodetector 06. Researchers from NUS create ‘whirling’ nano-structures in anti-ferromagnets 07. Terahertz accelerates beyond 5G towards 6G 08. Batteries that can be assembled in ambient air 09. Direct coherent multi-ink printing of fabric supercapacitors 10. Experts ‘scan horizon’ to help prepare governments for next major biosecurity threat And others… AI Predicts Asymptomatic Carriers of […]

AI Predicts Asymptomatic Carriers of COVID-19

IEEE Spectrum  February 2, 2021 An international team of researchers (Germany, USA – industry) has developed a machine learning algorithm to determine the likelihood of asymptomatic carriers of the SARS-CoV-2 virus by using interaction-based continuous learning and inference of individual probability (CLIIP) for contagious ranking. It is based on multi-layer bidirectional path tracking and inference searching. The individual directed graph is determined by the appearance timeline and spatial data that can adapt over time, taking into account the incubation period and several features that can represent real-world circumstances, such as the number of asymptomatic carriers present. The model collects the […]

Batteries that can be assembled in ambient air

EurekAlert  February 1, 2021 Lithium batteries are typically assembled in a dry room that controls moisture because lithium salts in the electrolytes are highly reactive with moisture, which has a significant effect on the battery performance. Researchers in South Korea fabricated impurity scavenging separator membrane (ISM) using a powerful H2O and HF scavenging material. The material was synthesized by a urethane reaction between porous silica (p-SiO2) and (3-isocynatopropyl) triethoxysilane (ICPTES). The p-SiO2 reaction with ICPTES suppressed the acidification of the electrolyte with water and resulted in maintaining the shape of the SiO2 particles. The multifunctional separator exhibited high capacity retention […]

Direct coherent multi-ink printing of fabric supercapacitors

Phys.org  January 29, 2021 Fiber-shaped supercapacitors are a desirable high-performance energy storage technology for wearable electronics. The traditional method for device fabrication is based on a multistep approach to construct energy devices, which can present challenges during fabrication, scalability, and durability. An international team of researchers (China, USA – University of Colorado, Carnegie Mellon University, Singapore) has developed an all-in-one coaxial fiber-shaped asymmetric supercapacitor (FASC) device using direct coherent multi-ink writing, 3-D printing technology by designing the internal structure of the coaxial needles and regulating the rheological property and feed rates of the multi-ink. The device delivered a superior areal […]