Top 10 Science and Technology Inventions for the Week of March 15, 2024

01. Researchers achieve quantum key distribution for cybersecurity in novel experiment 02. Materials research explores design rules and synthesis of quantum memory candidates 03. New research on tungsten unlocks potential for improving fusion materials 04. New type of tunable filter reveals the potential for terahertz wireless communications 05. Powerless mechanoluminescent touchscreen underwater 06. Preventing magnet meltdowns before they can start 07. Researchers generate super-fast electrons with table-top laser systems 08. Paper AI sensor mimics brain for health monitoring 09. Novel method improves Fourier transform infrared spectroscopy detection of ultra-low concentration trace substances 10. China promises more money for science in […]

A 3D view into chaos: Researchers visualize temperature-driven turbulence in liquid metal for the first time

Phys.org   March 11, 2024 Researchers in Germany conducted an experiment inside a cylinder filled with the ternary alloy GaInSn focusing on the manifestation and dynamics of the large-scale circulation (LSC) in turbulent liquid metal convection. The large-scale flow structures were classified and characterized at Rayleigh numbers by means  enabling the full reconstruction of the three-dimensional flow structures in the entire convection cell. They identified the dominating modes of the turbulent convection. The analysis revealed that a single-roll structure of the LSC alternates in short succession with double-roll structures or a three-roll structure. This was accompanied by dramatic fluctuations of the […]

China promises more money for science in 2024

Nature  March 8, 2024 At its annual meeting this week, China’s legislative body, the National People’s Congress, promised to increase government funding for science by 10% in 2024. It’s the largest boost to funding in five years. The increase comes as the Chinese economy struggles to meet growth targets and is locked in a race for technological supremacy with the United States. “To win this game, China has to invest in science and technology, especially in basic research,” says Marina Zhang, who studies innovation with a focus on China… read more.

Doing more but learning less: Addressing the risks of AI in research

Phys.org   March 8, 2024 Scientists are enthusiastically imagining ways in which artificial intelligence (AI) tools might improve research. A team of researchers in the US (Yale University, Princeton University) developed a taxonomy of scientists’ visions for AI, observing that their appeal comes from promises to improve productivity and objectivity by overcoming human shortcomings. But proposed AI solutions can also exploit our cognitive limitations, making us vulnerable to illusions of understanding in which we believe we understand more about the world than we actually do. Such illusions obscure the scientific community’s ability to see the formation of scientific monocultures, in which […]

Materials research explores design rules and synthesis of quantum memory candidates

Phys.org   March 11, 2024 Stoichiometric Eu3+ compounds have recently shown promise for building dense, optically addressable quantum memory as the cations’ long nuclear spin coherence times and shielded 4f electron optical transitions provide reliable memory platforms but finding rare linewidth behavior within a wide range of potential chemical spaces remains difficult. Researchers at the University of Illinois, Urbana─Champaign, have found density functional theory (DFT) procedures that reliably reproduce known phase diagrams and correctly predict two experimentally realized quantum memory candidates. They synthesized the double perovskite halide Cs2NaEuF6 which is an air-stable compound with a calculated band gap of 5.0 eV […]

New research on tungsten unlocks potential for improving fusion materials

Phys.org   March 13, 2024 Understanding phonon scattering has remained challenging and requires detailed information on interactions between phonons and electrons. An international team of researchers (USA – SLAC National Accelerator Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Sweden, Italy) used an ultrafast electron diffuse scattering technique to resolve the nonequilibrium phonon dynamics in femtosecond–laser-excited tungsten in both time and momentum. They determined transient populations of phonon modes which show strong momentum dependence initiated by electron-phonon coupling. For phonons near Brillouin zone border, they observed a transient rise in their population on a timescale driven by the strong electron-phonon […]

New type of tunable filter reveals the potential for terahertz wireless communications

Phys.org   March 11, 2024 Researchers in Japan constructed a tunable Fabry–Perot interferometer (FPI) by controlling the effective refractive index of pitch-variable subwavelength gratings (PV-SWGs) that were incorporated into an FP cavity. The period of the PV-SWG could be varied to change the effective refractive index and shift the optical resonant frequency of the FPI. Compared with conventional methods that tune the optical resonance by adding fillers or deforming the cavity, the  FPI obtained a higher transmission and quality factor (Q-factor) for the transmittance peak, and its resonant frequency could be shifted by simply stretching the PV-SWG. According to the researchers […]

Novel method for controlling light polarization uses liquid crystals to create holograms

Phys.org  March 11, 2024 Metasurfaces are candidates for vectorial optics polarization, but their static post-fabrication geometry largely limits dynamic tunability. Liquid crystal (LC) is usually employed as an additional index-changing layer together with metasurfaces. However, most of the reported LCs only impart a varying but uniform phase on top of that from the metasurface. An international team of researchers (China, Singapore) pixelated a single-layer LC to display versatile and tunable vectorial holography, in which the polarization and amplitude could be arbitrarily and independently controlled at varying spatial positions. The subtle and vectorial LC-holography highlighted the broadband and electrically switchable functionalities. […]

Novel method improves Fourier transform infrared spectroscopy detection of ultra-low concentration trace substances

Phys.org  March 7, 2024 High-resolution solar spectra play a crucial role in research pertaining to atmospheric vertical profiles and analysis of atmospheric composition. However, the improvement of spectral resolution is subject to certain limitations due to hardware constraints. Researchers in China proposed multi-step linear prediction (MSLP) method based on sliding windows to enhance the spectral resolution of passive remote sensing FTIR spectra, thereby improving the accuracy and reliability of atmospheric composition analysis. Their method improved the spectral resolution of passive remote sensing FTIR spectra. In simulations, the MSLP method significantly enhanced the spectral resolution of passive remote sensing FTIR spectra. […]

Paper AI sensor mimics brain for health monitoring

Nanowerk  March 11, 2024 Physical reservoir computing (PRC), which mimics the human brain using physical phenomena, offers a low-power consumption architecture. However, creating a flexible and easily disposable sensors using PRC capable of processing optical signals with sub-second response times suitable for biological signals presents a challenge. Researchers in Japan designed disposable and flexible paper-based optoelectronic synaptic devices which are composed of nanocellulose and ZnO nanoparticles, for PRC. The device exhibited synaptic photocurrent in response to optical input.  The memory capacity of short-term memory task, indicating the device’s ability to store past information was 1.8. It could recognize handwritten digits […]