Pearls may provide new information processing options for biomedical, military innovations

Science Daily  November 13, 2020 To overcome the hardware limitations of conventional spectrometers and hyperspectral imagers a team of researchers in the US (Purdue University, AFRL) has developed a spectral information processing scheme in which light transport through an Anderson-localized medium serves as an entropy source for compressive sampling directly in the frequency domain. As implied by the “lustrous” reflection originating from the exquisite multilayered nanostructures, a pearl (or mother-of-pearl) allows us to exploit the spatial and spectral intensity fluctuations originating from strong light localization for extracting salient spectral information with a compact and thin form factor. The research can […]

Optical wiring for large quantum computers

Phy.org  October 22, 2020 The fundamental qualities of individual trapped-ion qubits are promising for long-term systems, but the optics involved in their precise control are a barrier to scaling. Researchers in Switzerland used scalable optics co-fabricated with a surface-electrode ion trap to achieve high-fidelity multi-ion quantum logic gates, which are often the limiting elements in building up the precise, large-scale entanglement that is essential to quantum computation. Light is efficiently delivered to a trap chip in a cryogenic environment via direct fibre coupling on multiple channels, eliminating the need for beam alignment into vacuum systems and cryostats and lending robustness […]