Scientists take steps to create a ‘racetrack memory,’ potentially enhancing data storage

Science Daily  May 5, 2020 A team of researchers in US ( New York University, University of Virginia, NIST, University of Colorado, Boulder) are working to supplant current methods of mass data storage with a skyrmion racetrack memory which reconfigures magnetic fields in innovative ways. It has improved density of information storage, faster operation, and lower energy use. Skyrmions can be moved by applying an external stimulus, such as a current pulse. They are only stable in very specific material environments, so identifying the ideal materials that can host skyrmions and the circumstances under which they are created is a […]

Toward a more energy-efficient spintronics

EurekAlert  April 22, 2020 In order to generate and detect spin currents, spintronics traditionally uses ferromagnetic materials whose magnetization switching consume high amounts of energy. Researchers in France have demonstrated an alternative strategy to achieve low-power spin detection in a non-magnetic system by harnessing the electric-field-induced ferroelectric-like state of strontium titanate to manipulate the spin–orbit properties of a two-dimensional electron gas and efficiently convert spin currents into positive or negative charge currents, depending on the polarization direction. The research opens the way to the electric-field control of spin currents and to ultralow-power spintronics…read more. TECHNICAL ARTICLE 

Van der Waals magnets, a material for future semiconductors

Nanowerk  February 16, 2020 When van der Waals materials are combined with other 2D materials, they can create new materials that show previously undiscovered properties. However, most van der Waals magnetic materials have some constraints in terms of spintronics application because of their low Curie temperature and high coercivity making them unsuitable for use in certain devices. An international team of researchers (South Korea, USA – Brookhaven National Laboratory, Lawrence Berkeley National Laboratory) found that Fe3–xGeTe2 nanoflakes show a significant suppression of the magnetic anisotropy with hole doping. Electronic structure measurements and calculations revealed that the chemical potential shift associated […]

Detection of very high frequency magnetic resonance could revolutionize electronics

Phys.org  January 27, 2020 A team of researchers in the US (UC Riverside, UC Santa Barbara) generated spin current in an antiferromagnet and were able to detect it electrically. They used terahertz radiation to pump up magnetic resonance in chromia to facilitate its detection. Although antiferromagnets are statically uninteresting, they are dynamically interesting. Electron spin precession in antiferromagnets is much faster than in ferromagnets, resulting in frequencies that are two-three orders of magnitude higher than the frequencies of ferromagnets—thus allowing faster information transmission…read more. TECHNICAL ARTICLE

Computing with molecules: A big step in molecular spintronics

EurekAlert  December 23, 2019 An international team of researchers (Germany, Switzerland, France) integrated a spin switching functionality into robust complexes, relying on the mechanical movement of an axial ligand strapped to the porphyrin ring. They demonstrated reversible interlocked switching of spin and coordination induced by electron injection on Ag(111) for this class of compounds. The stability of the two spin and coordination states of the molecules exceeds days. The potential applications of this switching concept go beyond the spin functionality and may turn out to be useful for controlling the catalytic activity of surfaces…read more. TECHNICAL ARTICLE

Paving the way for spintronic RAMs: A deeper look into a powerful spin phenomenon

Science Daily  December 26, 2019 Extensive studies on Unidirectional spin Hall magnetoresistance (USMR) in metallic bilayers has found that its magnitude (∼10−5) is too small for practical applications. An international team of researchers(Japan,Vietnam) has demonstrated a giant USMR effect in a heterostructure of BiSb topological insulator – GaMnAs ferromagnetic semiconductors. They obtained a large USMR ratio of 1.1% and found that this giant USMR is governed not by the giant magnetoresistance like spin-dependent scattering but by magnon emission/absorption and strong spin-disorder scattering in the GaMnAs layer. Their results present a novel strategy to exploit spin-related phenomena in topological materials, which […]

Toward more efficient computing, with magnetic waves

MIT News  November 28, 2019 Classical computers rely on massive amounts of electricity for computing and data storage and generate a lot of wasted heat. MIT researchers developed a circuit architecture that uses only a nanometer-wide domain wall in layered nanofilms of magnetic material to modulate a passing spin wave without any extra components or electrical current. In turn, the spin wave can be tuned to control the location of the wall, as needed. This provides precise control of two changing spin wave states, which correspond to the 1s and 0s used in classical computing. In the future, pairs of […]

Physicists find first possible 3-D quantum spin liquid

Phys.org  July 15, 2019 A quantum spin liquid is a state of matter where unpaired electrons’ spins, although entangled, do not show magnetic order even at the zero temperature. An international team of researchers (USA – Rice University, UC San Diego, Oak Ridge National Laboratory, Rutgers University, industry, UK, Switzerland, South Korea, University of Hong Kong) used thermodynamic, muon spin relaxation and neutron scattering experiments on single crystals of Ce2Zr2O7 to demonstrate the absence of magnetic ordering and the presence of a spin excitation continuum at 35 mK. With no evidence of oxygen deficiency and magnetic/non-magnetic ion disorder seen by neutron […]

Unlocking magnetic properties for future faster, low energy spintronics

Nanowerk  July 8, 2019 While studying Fe3GeTe2 (FGT) which has promising ferromagnetic properties for spintronic devices, an international team of researchers (Australia, China, South Korea, Russia) discovered magnetoresistance in devices with ferromagnetic van-der-Waals (vdW) materials. They attributed this property to a spin momentum locking induced spin-polarized current at the graphite/FGT interface. The research reveals that ferromagnetic heterostructures assembled from vdW materials can exhibit substantially different properties to those exhibited by similar heterostructures grown in vacuum. Hence, it highlights the potential for new physics and new spintronic applications to be discovered using vdW heterostructures…read more. Open Access TECHNICAL ARTICLE

Ferromagnetic nanoparticle systems show promise for ultrahigh-speed spintronics

Phys.org  March 28, 2019 Based on their previous discovery that the “electric field” component of a terahertz pulse plays a key role in the terahertz magnetization modulation of semiconductor-based ferromagnetic materials, researchers in Japan embedded MnAs ferromagnetic nanoparticles in a GaAs host matrix. They observed a large modulation up to 20% of the magnetization of the nanoparticles with terahertz pump pulse irradiation. They found that the modulation is induced by the electric-field component of the terahertz pulse via spin-carrier interactions. The results will lead to an ultrafast coherent magnetization reversal within a picosecond, which will be an essential technique for […]