Engineers make a promising material stable enough for use in solar cells

Science Daily  April 29, 2020 Inherently soft crystal lattice of Halide perovskites allows greater tolerance to lattice mismatch, making them promising for heterostructure formation and semiconductor integration. However, their high intrinsic ion mobility, which leads to interdiffusion and large junction widths and their poor chemical stability, epitaxial growth of atomically sharp heterostructures of halide perovskites has not yet been achieved. An international team of researchers (USA – Perdue University, MIT, UC Berkeley, Lawrence Berkeley National Laboratory, China) has developed a strategy to substantially inhibit in-plane ion diffusion in two-dimensional halide perovskites by incorporating rigid π-conjugated organic ligands. They have demonstrated […]

After 40 Years of Hunting, Scientists Identify a Key Flaw in Solar Panel Efficiency

Science Alert  February 13, 2020 Silicon solar cells containing boron and oxygen suffer from Light Induced Degradation which could be responsible for the 2 percent efficiency drop that solar cells can see in the first hours of use. Using deep level transient spectroscopy and photoluminescence an international team of researchers (UK, Portugal, Belarus, Australia) has observed the conversion of a deep boron-di-oxygen-related donor state into a shallow acceptor which correlates with the change in the lifetime of minority carriers in the silicon. They propose structures of the BsO2 defect which match the experimental findings and hypothesize that the dominant recombination […]

Anti-solar cells: A photovoltaic cell that works at night

Science Daily  January 29, 2020 Photovoltaics can generate electricity during daylight hours. Researchers at the University of Maryland consider an alternative photovoltaic concept that uses the earth as a heat source and the night sky as a heat sink, resulting in a “nighttime photovoltaic cell” that employs thermoradiative photovoltaics and concepts from the advancing field of radiative cooling. In this perspective, they discuss the principles of thermoradiative photovoltaics, the theoretical limits of applying this concept to coupling with deep space, the potential of advanced radiative cooling techniques to enhance their performance, and a discussion of the practical limits, scalability, and […]

Solar cells with new interfaces

EurekAlert  September 30, 2019 Perovskite solar cells are still unstable due to several internal degradation factors. Most approaches for solving problems of stability and improvement of the efficiency of perovskite cells concern the optimization of the chemical composition of perovskite. An international team of researchers (Italy, Russia) proposed an original approach to design perovskite solar cells with improved performances, namely the use of two-dimensional Titanium-Carbide compounds called MXenes to dope perovskite. They incorporated microscopic amount of MXenes in the perovskite solar cell. As a result, they achieved increase of the efficiency for devices by more than 25 %, compared to […]