Improving quantum sensors by measuring the orientation of coherent spins inside a diamond lattice

Phys.org  June 16, 2022 Researchers in Japan have developed a new method for implementing magnetic field measurements in nitrogen-vacancy centers. The spin state of an extra electron at this site can be read or coherently manipulated using pulses of light. They used an “inverse Cotton-Mouton” effect to test their method. They used light of different polarizations to create tiny controlled local magnetic fields. They have demonstrated that by measuring the orientation of coherent spins inside a diamond lattice, the magnetic fields can be measured even over very short times. The team hopes that this work will help enable quantum spintronic […]

Breakthrough in quantum sensing provides new material to make qubits

Phys.org  March 9, 2022 Being atomically thin and amenable to external controls, 2D materials offer a new paradigm for the realization of patterned qubit fabrication and operation at room temperature for quantum information sciences applications. An international team of researchers (USA – Temple University, Northeastern University, Taiwan) has shown that the antisite defect in 2D transition metal dichalcogenides (TMDs) can provide a controllable solid-state spin qubit system. Using high-throughput atomistic simulations, they identified several neutral antisite defects in TMDs that lie deep in the bulk band gap and host a paramagnetic triplet ground state. The analysis revealed the presence of […]