Pixel-by-pixel analysis yields insights into lithium-ion batteries

MIT News   September 13, 2023 Reaction rates at spatially heterogeneous, unstable interfaces are difficult to quantify, yet they are essential in engineering many chemical systems, such as batteries and electrocatalysts. Experimental characterizations of such materials by operando microscopy produce rich image datasets, but data-driven methods to learn physics from these images are lacking because of the complex coupling of reaction kinetics, surface chemistry and phase separation. A team of researchers in the US (MIT, Stanford University, industry, SLAC National Accelerator Laboratory) showed that heterogeneous reaction kinetics can be learned from in situ scanning transmission X-ray microscopy (STXM) images of carbon-coated […]

Development of stretchable and printable free-form lithium-ion batteries

Nanowerk  March 25, 2022 Researchers in South Korea have developed a fully stretchable lithium-ion battery system using stretchable electrode. It acquires intrinsic stretchability and improved interfacial adhesion with the active materials via a functionalized physically cross-linked organogel as a stretchable binder and separator. The stretchable current collectors are fabricated in the form of nanocomposites consisting of a matrix with excellent barrier properties without swelling in organic electrolytes and nanostructure-controlled multimodal conductive fillers. They demonstrated several types of stretchable lithium-ion batteries that reliably operated under various stretch deformations with capacity and rate capability comparable with a nonstretchable batteries even under high […]

Charging ahead to higher energy batteries

TechXplore  February 26, 2018 The low rate capabilities and low energy densities of the all-solid-state batteries are partly due to a lack of suitable solid-solid heterogeneous interface formation technologies. Researchers in Japan grew garnet-type oxide solid electrolyte crystals in molten LiOH on a substrate that bonded the electrode into a solid state as they grew. They were able to control the thickness and connection area within the cubic layer, which acts as a ceramic separator. Each crystal is connected to neighboring ones. The new technique of stacking solid electrolyte layer could be an ideal ceramic separator with a dense thin-interface […]