Charging ahead to higher energy batteries

TechXplore  February 26, 2018
The low rate capabilities and low energy densities of the all-solid-state batteries are partly due to a lack of suitable solid-solid heterogeneous interface formation technologies. Researchers in Japan grew garnet-type oxide solid electrolyte crystals in molten LiOH on a substrate that bonded the electrode into a solid state as they grew. They were able to control the thickness and connection area within the cubic layer, which acts as a ceramic separator. Each crystal is connected to neighboring ones. The new technique of stacking solid electrolyte layer could be an ideal ceramic separator with a dense thin-interface for all-solid-state batteries… read more. Open Access TECHNICAL ARTICLE 

Image (a) is a cross-sectional SEM image of the Li5La3Nb2O12 crystal layer and image (b) shows computationally simulated trajectories of the Li, La, Nb, and O framework atoms. Credit: Shinshu University.

Posted in Advanced manufacturing, Energy and tagged , , .

Leave a Reply