‘Anti-aging’ chemistry taken from nature overcomes next-gen lithium battery decay

Phys.org  November 15, 2021 Degradation occurs pretty much everywhere in nature since oxygen is one of the elements most capable of attracting electrons from other atoms and molecules. Organisms often produce different types of enzymes that work to scavenge active oxygen and free radicals to alleviate the issue. Inspired by the anti-oxygen coping mechanisms in nature researchers in China developed a photostabilizer—a simple, anti-aging binder additive to the electrolyte that can scavenge the singlet oxygen atoms and free radicals as they occur. Through experimental investigation and theoretical calculation, they found that the scavenging mechanism in layered transition metal oxides-based lithium […]

Ultrafast charging of batteries using fully new anode material

Nanowerk  November 15, 2021 Nanosizing of active electrode material is a common strategy to increase the effective lithium-ion diffusion transport rate, but it also decreases the volumetric energy/power density and stability of the battery. An international team of researchers (the Netherlands, China, Germany) has demonstrated nickel niobate (NiNb2O6) as a new intrinsic high-rate anode material for lithium-ion batteries without the requirement of realizing nano-architectures. The NiNb2O6 host crystal structure exhibits only a single type of channel for lithium-ion intercalation and can be fully lithiated with a capacity of about 244 mAh g−1 at low current densities. A high diffusion coefficient […]

An electrolyte design strategy for making divalent metal batteries

Phys.org  October 8, 2021 Rechargeable magnesium and calcium metal batteries (RMBs and RCBs) are promising alternatives to lithium-ion batteries because of the high crustal abundance and capacity of magnesium and calcium. But they are plagued by sluggish kinetics and parasitic reactions. A team of researchers in the US (USA – University of Maryland, US Army, China) found a family of methoxyethyl-amine chelants that greatly promote interfacial charge transfer kinetics and suppress side reactions on both the cathode and metal anode through solvation sheath reorganization, thus enabling stable and highly reversible cycling of the RMB and RCB full cells with energy […]

Flexible, stretchable battery capable of moving smoothly like snake scales

Nanowerk  September 28, 2021 Researchers in South Korea have made a structure with individual, overlapping units, similar to snake scales that can be used to construct shape-morphing batteries for untethered soft robots. They created it by folding well-defined, two-dimensional patterns with cutouts, the folding lines mimicking the hinge structure of snakeskin, enabling stable deformations without mechanical damage to rigid cells. The structure is applied to a stretchable Li-ion battery, constructed to form an arrangement of electrically interconnected, hexagonal pouch cells. Simulation confirmed that the battery maintains its performance under dynamic deformation with a 90% stretching ratio and 10-mm-radius bending curve, […]

High-rate magnesium rechargeable batteries move one step closer to realization

Science Daily  August 23, 2021 Mg/S batteries are some of the most promising rechargeable batteries owing to their high theoretical energy density. However, their development is hindered by low electronic conductivity of S, sluggish Mg2+ diffusion in solid Mg–S compounds formed by discharge, and dissolubility of polysulfides into electrolytes. To address these problems researchers in Japan proposed liquid-S/sulfide composite cathode materials in combination with an ionic liquid electrolyte at intermediate temperatures (∼150 °C). The composite structure is spontaneously fabricated by electrochemically oxidizing metal sulfides, yielding liquid S embedded in a porous metal-sulfide conductive frame. They demonstrated the concept by a […]

An innovative process prevents irreversible energy loss in batteries

Phys.org  August 24, 2021 Due to the permanent loss of Li ions that occurs during the initial charge in the stabilization stage of the battery production the theoretical energy density that can be stored in the batteries has not been achieved. To overcome this issue researchers in South Korea have developed an electrode pre-treatment solution capable of minimizing the initial Li ion loss in graphite-silicon oxide composite anodes. After being dipped in the solution, the anode, which was composed of 50% SiOx, demonstrated negligible Li loss, enabling a full cell to exhibit near-ideal energy density. The work highlights the promise […]

New salts raise the bar for lithium ion battery technology

Phys.org  August 16, 2021 Lithium battery materials, currently in use, fall short in terms of safety and performance holding back the next generation of high-performance batteries. In particular, the development of the electrolyte poses a key challenge for higher power batteries suitable for energy storage and vehicle applications. Researchers in Australia have synthesized safe fluoroborate salts with battery grade purity by recrystallisation process. When put in a lithium battery with lithium manganese oxide cathodes, the cell cycled for more than 1000 cycles, even after atmospheric exposure. The salt was found to be very stable on aluminum current collectors at higher […]

The hidden culprit killing lithium-metal batteries from the inside

EurekAlert  July 14, 2021 A team of researchers in the US (Sandia National Laboratory, University of Oregon, industry, Lawrence Berkeley National Laboratory) repeatedly charged and discharged lithium coin cells with the same high-intensity electric current that electric vehicles need to charge. Using cryogenic femtosecond laser cross sectioning and subsequent scanning electron microscopy, they observed the electroplated Li-metal morphology and the accompanying solid electrolyte interphase (SEI) into and through the intact coin cell battery’s separator, gradually opening pathways for soft-short circuits that cause failure. They found that separator penetration by the SEI guided the growth of Li dendrites through the cell. […]

Preventing oxygen release leads to safer high-energy-density batteries

Phys.org  July 13, 2021 Oxide-based cathode materials are key components of secondary batteries. Problems originating from the lattice oxygen instability in oxide-based intercalation cathodes are widely reported, such as capacity degradation, gas generation, and thermal runaway, highlighting the importance of deep insights into the critical factors for lattice oxygen stability. Researchers in Japan Investigated the lattice oxygen stability in layered rock-salt LiNi1/3Co1/3Mn1/3O2−δ with a focus on oxygen release behavior and relevant changes in crystal and electronic structures. Release of lattice oxygen facilitates cation mixing, transition metal slab expansion, and Li slab contraction, thus deteriorating the layered structure. In the beginning […]

Innovative batteries put flying cars on the horizon

EurekAlert  June 7, 2021 Researchers at the Pennsylvania State University are exploring the requirements for electric vertical takeoff and landing (eVTOL) vehicles and designing and testing potential battery power sources. eVTOL’s unique operating profiles and requirements present grand challenges to batteries. The team’s work identifies the primary battery requirements for eVTOL in terms of specific energy and power, fast charging, cycle life, and safety, revealing that eVTOL batteries have more stringent requirements than electric vehicle batteries in all aspects. They found that fast charging is essential for downsizing aircraft and batteries for low cost while achieving high vehicle utilization rates […]