Scientists invent smallest known way to guide light

Science Daily  August 11, 2023
Addressing the optical mismatch between components typically results in compromises in size and performance of chip-scale optical circuits for practical devices. Researchers at the University of Chicago showed that they could confine and guide light in an ultrathin two-dimensional (2D) material (<1 nanometer thick). They made three-atom-thick waveguides—δ waveguides—based on wafer-scale molybdenum disulfide (MoS2) monolayers that could guide visible and near-infrared light over millimeter-scale distances with low loss and an efficient in-coupling. The extreme thinness provided a light-trapping mechanism analogous to a δ-potential well in quantum mechanics and enabled the guided waves that were essentially a plane wave freely propagating along the in-plane, but confined along the out-of-plane, direction of the waveguide. They demonstrated key functionalities essential for two-dimensional photonics, including refraction, focusing, grating, interconnection, and intensity modulation, by integrating thin-film optical components with δ waveguides using microfabricated dielectric, metal, or patterned MoS2… read more. TECHNICAL ARTICLE

Posted in Waveguide and tagged , , .

Leave a Reply