Researchers achieve breakthrough in silicon-compatible magnetic whirls

Phys.org  February 20, 2024 Antiferromagnets hosting real-space topological textures are promising platforms to model fundamental ultrafast phenomena and explore spintronics. However, as they are epitaxially fabricated on specific symmetry-matched substrates, preserving their intrinsic magneto-crystalline order, curtails their integration with dissimilar supports, restricting the scope of fundamental and applied investigations. An international team of researchers (UK, Switzerland, Singapore) circumvented this limitation by designing detachable crystalline antiferromagnetic nanomembranes of α-Fe2O3. They showed that flat nanomembranes host a spin-reorientation transition and rich topological phenomenology. They demonstrated the reconfiguration of antiferromagnetic states across three-dimensional membrane folds resulting from flexure-induced strains. They combined these developments […]