Pushing back the limits of optical imaging by processing trillions of frames per second

Phys.org  March 25, 2024 Despite real-time femtophotography advantages over conventional multi-shot approaches, existing techniques confront restricted imaging speed or degraded data quality by the deployed optoelectronic devices application scope, acquisition accuracy, and hindered by the limitations in the acquirable information imposed by the sensing models. An international team of researchers (Canada, France) overcame these challenges by developing swept coded aperture real-time femtophotography (SCARF). This enables all-optical ultrafast sweeping of a static coded aperture during the recording of an ultrafast event, bringing full sequence encoding of up to 156.3 THz to every pixel on a CCD camera. They demonstrated SCARF’s single-shot ultrafast […]

New device can control light at unprecedented speeds

Nanowerk  November 29, 2022 Harnessing the full complexity of optical fields requires the complete control of all degrees of freedom within a region of space and time. An international team of researchers (USA – MIT, industry, State University of New York, Rochester Institute of Technology, ARL (Rome), UK, Canada) resolved this challenge with a programmable photonic crystal cavity array enabled by four key advances: (1) near-unity vertical coupling to high-finesse microcavities through inverse design; (2) scalable fabrication by optimized 300 mm full-wafer processing; (3) picometre-precision resonance alignment using automated, closed-loop ‘holographic trimming’; and (4) out-of-plane cavity control via a high-speed μLED […]

Ultrafast imaging of terahertz electric waveforms using quantum dots

Phys.org  January 4, 2022 Only few imaging schemes can resolve sub-wavelength fields in the THz range, such as scanning-probe techniques, electro-optic sampling, and ultrafast electron microscopy. The intrinsic constraints on sample geometry, acquisition speed and field strength limit their applicability. An international team of researchers (Germany, Australia) harnessed the quantum-confined Stark-effect to encode ultrafast electric near-fields into colloidal quantum dot luminescence. Their approach, termed Quantum-probe Field Microscopy (QFIM), combines far-field imaging of visible photons with phase-resolved sampling of electric waveforms. By capturing ultrafast movies, they spatio-temporally resolved a Terahertz resonance inside a bowtie antenna and unveiled the propagation of a […]

Novel optics for ultrafast cameras creates new possibilities for imaging

MIT News  August 13, 2018 Researchers at MIT exploited time as an extra dimension in the optical design and demonstrated that by folding large spaces in time using time-resolved cavities, one can enable new camera capabilities without losing the targeted information. They demonstrated lens tube compression by an order of magnitude, together with ultrafast multi-zoom imaging and ultrafast multispectral imaging by time-folding the optical path at different regions of the imaging optics. They expect this technique to have a broad impact on time-resolved imaging and depth-sensing optics… read more. TECHNICAL ARTICLE