Lithium-sulfur batteries are one step closer to powering the future

Science Daily  January 6, 2023 Lithium-sulfur batteries exhibit poor cycle life and low energy content due to the polysulfides shuttling during cycling. An international team of researchers (South Korea, USA – Argonne National Laboratory, Stanford University) developed redox-active interlayers consisting of sulfur-impregnated polar ordered mesoporous silica. Unlike the redox-inactive interlayers, these redox-active interlayers enabled the electrochemical reactivation of the soluble polysulfides, protected the lithium metal electrode from detrimental reactions via silica-polysulfide polar-polar interactions and increased the cell capacity. When tested in a non-aqueous Li-S coin cell configuration, the use of the interlayer enabled an initial discharge capacity of about 8.5 […]

These energy-packed batteries work well in extreme cold and heat

EurekAlert  July 4, 2022 Researchers at UC San Diego have developed an electrolyte that is not only versatile and robust throughout a wide temperature range, but also compatible with a high energy anode and cathode. It is made of a liquid solution of dibutyl ether mixed with a lithium salt, and compatible with a lithium-sulfur battery. The electrolyte helps improve both the cathode side and anode side while providing high conductivity and interfacial stability. They engineered the sulfur cathode to be more stable by grafting it to a polymer. In tests, the proof-of-concept batteries retained 87.5% and 115.9% of their […]

Revealing thermal runaway routes in lithium-sulfur batteries

EurekAlert  March 14, 2022 Researchers in China investigated the thermal runaway behavior of Li-S pouch cells from the materials level and found that the thermal runaway route starts from cathode-induced reactions and then gets accelerated by reactions from the anode. The solvent vaporization was verified to dominate pressure building up during thermal runaway. Li-S batteries employing varied electrolytes with different thermal stabilities, even inorganic all solid-state electrolytes, all undergo rapid thermal runaway at a narrow temperature range due to the intrinsic thermal features of the sulfur cathode and Li metal anode sublimating, melting, and cross-reacting at high temperatures. According to […]

Supercharging tomorrow: Monash develops world’s most efficient lithium-sulfur battery

EurekAlert  January 3, 2020 Lithium-sulfur batteries can displace lithium-ion by delivering higher specific energy. Presently, however, the superior energy performance fades rapidly when the sulfur electrode is loaded to the required levels—5 to 10 mg cm−2— due to substantial volume change of lithiation/delithiation and the resultant stresses. An international team of researchers (Australia, Belgium, Germany) found an approach that places minimum amounts of a high-modulus binder between neighboring particles, leaving increased space for material expansion and ion diffusion. These expansion-tolerant electrodes with loadings up to 15 mg cm−2 yield high gravimetric (>1200 mA·hour g−1) and areal (19 mA·hour cm−2) capacities. […]

Building lithium-sulfur batteries with paper biomass

Science Daily  April 2, 2018 A major byproduct in the papermaking industry is lignosulfonate, a sulfonated carbon waste material. Researchers at Rensselaer Polytechnic Institute have demonstrated the potential of using lignosulfonate to design sustainable, low-cost electrode materials for lithium-sulfur batteries. In its elemental form, sulfur is nonconductive, but when combined with carbon at elevated temperatures, it becomes highly conductive, allowing it to be used in novel battery technologies. They have created a lithium-sulfur battery prototype that is the size of a watch battery, which can cycle about 200 times. The next step is to scale up the prototype to markedly […]