Scientists reduce all-solid-state battery resistance by heating

Science Daily  January 7, 2022 The interface between the positive electrode and solid electrolyte in an all-solid state battery shows a large electrical resistance, and the resistance increases when the electrode surface is exposed to air, degrading the battery capacity and performance. Researchers in Japan demonstrated that drastic reduction of the resistance is achievable by annealing the entire battery cell. Exposing the LiCoO2 positive electrode surface to H2O vapor increases the resistance by more than 10 times (to greater than 136 Ω cm2). The magnitude can be reduced to the initial value (10.3 Ω cm2) by annealing the sample in […]

Pathways toward realizing the promise of all-solid-state batteries

Nanowerk  March 13, 2020 Though promising all-solid-state batteries (ASSBs) still face barriers that limit their practical application such as poor interfacial stability, scalability challenges and production safety. In this review article researchers at UC San Diego seek to evaluate solid-state electrolytes beyond conventional factors and offer a perspective on various bulk, interface and nanoscale phenomena that require urgent attention within the scientific community. They provide a realistic assessment of the current state-of-the-art characterization techniques and evaluate future full cell ASSB prototyping strategies. They hope to offer rational solutions to overcome some major fundamental obstacles faced by the ASSB community, as […]