Researchers determine structure of new metal tellurate material with potential uses in solar energy and more

Phys.org  April 3, 2024 An international team of researchers (Austria, Sweden, Canada, Finland) grew crystals of CoTeO4 crystals by the application of chemical vapor transport reactions in closed silica ampoules, starting from polycrystalline material in a temperature gradient with TeCl4 as transport agent. Crystal structure analysis of CoTeO4 showed noticeable improvement over the statistical significance and accuracy of the previously reported structural model. CoTeO4 did not undergo a structural phase transition upon heating, but decomposed stepwise (Co2Te3O8 as intermediate phase) to Co3TeO6 as the only crystalline phase stable above 770 °C. Temperature-dependent magnetic susceptibility and dielectric measurements suggested antiferromagnetic ordering […]

Breakthrough synthesis method improves solar cell stability

Science Daily  October 26, 2023 2D multilayered halide perovskites have emerged as a platform for understanding organic–inorganic interactions, tuning quantum confinement effects and realizing efficient and durable optoelectronic devices. However, reproducibly synthesizing 2D perovskite crystals with a perovskite-layer thickness using existing crystal growth methods is challenging. An international team of researchers (Rice University, Houston, Northwestern University, University of Pennsylvania, France) demonstrated a kinetically controlled space confinement for the growth of phase-pure Ruddlesden–Popper and Dion–Jacobson 2D perovskites. Phase-pure growth was achieved by progressively increasing the temperature for a fixed time or the crystallization time at a fixed temperature, which allowed for […]

Turning bacteria into solar factories with semiconductor nanoclusters

Nanowerk  July 28, 2023 Semiconductor-based biointerfaces are typically established either on the surface of the plasma membrane or within the cytoplasm. In Gram-negative bacteria, the periplasmic space, characterized by its confinement and the presence of numerous enzymes and peptidoglycans, offers additional opportunities for biomineralization, allowing for nongenetic modulation interfaces. A team of researchers in the US (University of Chicago, Argonne National Laboratory, National Renewal Energy Laboratory) demonstrated semiconductor nanocluster precipitation containing single- and multiple-metal elements within the periplasm. The periplasmic semiconductors were metastable and displayed defect-dominant fluorescent properties. The defect-rich (i.e., the low-grade) semiconductor nanoclusters produced in situ could still […]

Caltech Demonstrates Space Based Solar

Next Big Future  June 6, 2023 Researchers at Caltech launched Space Solar Power Project (SSPD) launched into orbit a prototype to beam power to Earth and that transmitted power from orbit to another receiver in orbit. They confirmed that MAPLE (Microwave Array for Power-transfer Low-orbit Experiment) can transmit power successfully to receivers in space. They programed the array to direct its energy toward Earth. It could survive the trip to space and operate there. Microwave Array for Power-transfer Low-orbit Experiment (MAPLE) and one of the three key experiments within SSPD-1 includes a small window through which the array can beam […]

Newly developed hydrogel nanocomposite for the mass production of hydrogen

Phys.org  April 27, 2023 Despite recent progress in designing highly active photocatalysts, inefficient solar energy and mass transfer, the instability of catalysts and reverse reactions impede their practical large-scale applications. Storing solar energy in chemical bonds aided by heterogeneous photocatalysis is desirable for sustainable energy conversion. Researchers in South Korea designed a floatable photocatalytic platform constructed from porous elastomer–hydrogel nanocomposites. The nanocomposites at the air–water interface featured efficient light delivery, facile supply of water and instantaneous gas separation. Consequently, a high hydrogen evolution rate of 163 mmol h–1 m–2 was achieved using Pt/TiO2 cryoaerogel, even without forced convection. When fabricated in an area […]

Nanoparticles self-assemble to harvest solar energy

Science Daily  February 21, 2023 Most disordered organic polymers are almost incapable of limiting the absorption in the desired cutoff wavelength range, which is detrimental to the design of selective absorbers. An international team of researchers (China, Singapore) reports a scalable selective absorber with a quasiperiodic nanostructure composed by an economical widespread surface self-assembly of densely arranged Fe3O4 nanoparticles, possessing a high-performance energy conversion for low-grade solar energy. By investigating the scale effect of the quasiperiodic densely arranged plasmonic nanostructure, a significant solar absorption >94% and ideal passive suppression of thermal emissivity <0.2 could be obtained simultaneously. With the synergy […]

Solid material that ‘upconverts’ visible light photons to UV light photons could change how we utilize sunlight

Phys.org  January 30, 2023 Only about 4% of terrestrial sunlight falls within the UV range in the electromagnetic spectrum. This leaves a large portion of sunlight spectrum unexploited for photopolymerization to form a resin and activation of photocatalysts to drive reactions that generate green hydrogen or useful hydrocarbons (fuels, sugars, olefins, etc.). Photon upconversion (UC) could be the key to solving this problem. Researchers in Japan have developed a revolutionary solid film that can perform visible-to-UV photon UC for weak incident light while remaining photostable for an unprecedented amount of time in air. The film is completely solvent-free “green” formation […]

Self-repairing healing solar cells recovering in the dark of the night

Nanowerk  January 4, 2023 Perovskite solar cells degrade when exposed to sunlight, which results in decreasing performance over time. An international team of researchers (Sweden, Israel) demonstrated that metal halide perovskite solar cells, which degrade in sunlight, can rebuild their efficiency at night, when it’s dark. They exposed single crystals of lead-based metal halide perovskites to powerful lasers, which made them lose their ability to glow. However, they found that the material regained its photoluminescence following some recuperation time in darkness. They observed this in a solar cell’s thin, multicrystalline layer and the other one in single crystals. It is […]

A step towards solar fuels out of thin air

Science Daily  January 4, 2023 Taking inspiration from the way plants can convert sunlight into chemical energy using carbon dioxide from the air, researchers in Switzerland have invented a solar-powered artificial leaf, built on a novel electrode capable of harvesting water from the air for conversion into hydrogen fuel. The system combines semiconductor-based technology and the electrodes that are porous and transparent. When the device was simply exposed to sunlight, it took water from the air and produced hydrogen gas. The coating of various semiconductors on the substrates was established including Fe2O3 (chemical bath deposition), CuSCN and Cu2O (electrodeposition), and […]

New insights into energy loss open doors for one up-and-coming solar tech

Science Daily  November 18, 2022 Understanding the factors affecting energy loss in organic photovoltaics (OPVs) is imperative to achieve further improvements in their efficiency and to establish design rules for the development of new materials. By studying several planar and bulk heterojunction solar cells, an international team of researchers (USA – Princeton University, Saudi Arabia) has demonstrated that the non-radiative energy loss component quadratically increases with increasing Gaussian CT-state disorder. They showed that by defining the total energy loss in terms of the peak of the CT-state distribution the effect of disorder on OPV performance can be unambiguously identified, offering […]