A transistor of graphene nanoribbons

Source: Science Daily, November 29, 2017 Graphene becomes a semiconductor in the form of nanoribbons which has a sufficiently large energy or band gap in which no electron states can exist: it can be turned on and off — and thus may become a key component of nanotransistors. However, graphene ribbons with irregular edges may not exhibit the desired electrical properties. An international team of researchers (USA – UC Berkeley, Switzerland) succeeded in growing ribbons exactly nine atoms wide with a regular armchair edge from precursor molecules. After several process steps, they formed the desired nanoribbons of about one nanometer […]

Researchers make solid ground toward better lithium-ion battery interfaces

Source: Science Daily, December 12, 2017 There are two important interfaces in solid state batteries, at the cathode-electrolyte junction and electrolyte-anode junction. Either could be dictating the performance limits of a full battery. The interfaces that we are only a few atomic layers thick. Researchers at Sandia National Laboratory engineered the interface down to the nanometer or even subnanometer level to study and improve the interfaces between different materials. The underlying goal of the work is to make solid-state batteries more efficient and to improve the interfaces between different materials … read more. TECHNICAL ARTICLE

‘Magnetoelectric’ material shows promise as memory for electronics

Source: Science Daily, November 29, 2017 Devices tend to store information through electric fields or through magnetic fields. In the future, our electronics could benefit from the best of each method. Switching one functionality of a magnetoelectric material induces a change in the other, referred to as cross-coupling. To better understand cross-coupling, an international team if researchers (USA – University of Wisconsin, Temple University, Argonne National Laboratory, Northern Illinois University, Italy, UK, Luxembourg, Switzerland) describe their unique process for making a high-quality magnetoelectric material and exactly how and why it works… read more.  Open Access TECHNICAL ARTICLE

Fully screen-printed monoPoly silicon solar cell technology

Source: Phys.org, December 14, 2017 The technology developed by researchers in Singapore is applicable on both p-type and n-type silicon wafers, features homogenous junctions and standard fire-thorough screen-printed metal contacts with grids on both sides, resulting in a high-efficiency bifacial solar cell. It uses an advanced tunnel oxide and doped silicon layers, enabling excellent surface passivation in the non-contact cell regions along with very low-resistance and low-recombination screen-printed contacts. Using commercially available large-area Cz-Si wafers they recorded an average cell efficiency of 21.5%… read more.