Materials science: A rough start can lead to a strong bond

Science Daily  December 21, 2022 Researchers in Japan developed a cheap and simple process to create nanoscale structures on the surface of galvanized steel, which is commonly used in the automotive industry, that provided a more conducive interface for attaching injection-molded polymers. They used hot water treatment (HWT) to produce a nanoscale needle-like structure on the zinc coating surface to enhance the joining strength and obtained strong joints of galvanized high-strength steel (GHSS) and polybutylene terephthalate (PBT) with minimal damage to the zinc coating. The effects of HWT conditions on the tensile shear strength were evaluated and the optimized strength […]

Nanoantennas directing a bright future

Nanowerk  December 21, 2022 Phosphor plates combined with nanoantenna, enable spatial and spectral control over luminescence. While the emission enhancement in a specific direction has been reported in nanoantenna studies, the evaluation of the total distribution of radiation as well as the conversion efficiency is largely missing. An international team of researchers (Japan, China) developed nanoantenna phosphors consist of a hexagonal array of titanium dioxide (TiO2) nanoparticles, fabricated on a phosphor plate of yttrium aluminum garnet doped with Ce3+ (YAG:Ce). They visualized the distribution of photoluminescence from the nanoantenna phosphor into forward, backward, and side directions by using an integrating […]

Nature’s 10 Ten people who helped shape science in 2022

Nature  December 14, 2022 A trail-blazing astronomer, a climate revolutionary and a transplant pioneer are some of the people behind this year’s big stories. The Nature’s 10 list explores key developments in science this year and some of the people who played important parts in these milestones. Along with their colleagues, these individuals helped to make amazing discoveries and brought attention to crucial issues. Nature’s 10 is not an award or a ranking. The selection is compiled by Nature’s editors to highlight key events in science through the compelling stories of those involved…read more.

New strategy proposed for ultra-long cycle lithium-ion battery

Phys.org  December 15, 2022 In the process of battery reaction, stress accumulation and lattice oxygen loss will cause some microcracks in lithium-rich manganese-based materials. The migration of transition metal ions will lead to phase transition of materials and other harmful side reactions. Researchers in China prepared high-performance cathode materials for lithium-rich manganese-based lithium-ion batteries. They did sulfur doping and in-situ growth of coherent spinel phase synchronously on the surface of lithium-rich manganese-based materials. The formation of TM-S bond configuration induced by S incorporation can effectively accelerated the lithium ions diffusion and suppressed the undesired oxygen redox. Therefore, the LMRS@S cathode […]

Producing ‘green’ energy — literally — from living plant ‘bio-solar cells’

Science Daily  December 13, 2022 Harvesting an electrical current from biological photosynthetic systems is typically achieved by immersion of the system into an electrolyte solution. Researchers in Israel used the thick water-preserving outer cuticle of the succulent Corpuscularia lehmannii serves as the electrochemical container, the inner water content as the electrolyte into which an iron anode and platinum cathode were introduced. They produced up to 20 μA/cm2 bias-free photocurrent. When 0.5 V bias was added to the iron anode, the current density increased ∼10-fold, and evolved hydrogen gas could be collected with a Faradaic efficiency of 2.1 and 3.5% in […]

Researchers release roadmap for the development of quantum information technologies

Phys.org  December 14, 2022 Q-NEXT, a U.S. Department of Energy (DOE) National Quantum Information Science Research Center, has created a roadmap for quantum interconnects research and its impact for quantum information science and technology. Q-NEXT members and participants are from academia, industry, and DOE national laboratories. The roadmap addresses the role of quantum interconnects in three emerging areas of quantum information: computing, communication, and sensing. The roadmap reviews the materials, components and systems used for these purposes; summarizes relevant scientific questions and issues; and addresses the most pressing research needs. It distills these considerations into recommendations for strategic science and […]

Scientific highlights 2022

Max Plank Society  December 14, 2022 Many publications by Max Planck scientists in 2022 were of great social relevance or met with a great media response. We have selected 12 articles to present you with an overview of some noteworthy research of the year…read more.

Scientists turn single molecule clockwise or counterclockwise on demand

Phys.org  December 21, 2022 Complexes containing rare-earth ions attract great attention for their technological applications ranging from spintronic devices to quantum information science. While charged rare-earth coordination complexes are ubiquitous in solution, they are challenging to form on materials surfaces that would allow investigations for potential solid-state applications. A team or researchers in the US (Argonne National Laboratory, Ohio University, University of Illinois) has demonstrated formation and atomically precise manipulation of rare-earth complexes on gold surface. Although they are composed of multiple units held together by electrostatic interactions, the entire complex rotates as a single unit when electrical energy is […]

Signal processing algorithms improved turbulence in free-space optic tests

Science Daily  December 20, 2022 Researchers in the UK used commercially available photonic lanterns, a commercial transponder, and a spatial light modulator to emulate turbulence. They simultaneously transmitted multiple data signals using different spatially shaped beams of light using a photonic lantern. By detecting light with these shapes using a second lantern, more of the light is collected at the receiver, and the original data can be unscrambled greatly reduce the impact of the atmosphere on the quality of the data received in MIMO digital signal processing. By transmitting multiple beams of different shapes through the same telescopes and detecting […]

Team creates protein-based material that can stop supersonic impacts

Phys.org  December 13, 2022 Extreme energy dissipating materials are essential for a range of applications, in the military, law enforcement, aerospace industry to name a few. Researchers in the UK have created and patented a new shock-absorbing material that could revolutionize both the defense and planetary science sectors. They incorporated a recombinant form of the mechanosensitive protein talin into a monomeric unit and crosslinked, resulting in the production of a talin shock absorbing material (TSAM). When subjected to 1.5 km/s supersonic shots, TSAMs were shown not only to absorb the impact, but to capture/preserve the projectile. According to the researchers […]