Steering light to places it isn’t supposed to go

Phys.org  April 28, 2021
The best materials for housing qubits and certain other optically activated objects typically reflect incident light. By stopping externally applied light from reaching its target, this reflectivity presents a challenge for controlling optically integrated devices. Researchers in the Netherlands have demonstrated a way of guiding light along an arbitrary path through a material by patterning the light’s phase. They shone an infrared beam into the edge of a 2D silicon crystal containing a periodic arrangement of air-filled pores. A large fraction of the light was reflected back along the beam, but because of disorder in the crystal, some was reflected out of the crystal at 90°. They captured this light with a camera. They steered the beam by iteratively modulating the phase of its wave front. Light detected by the camera indicated the beam’s target position in the sample; this information was then fed into an algorithm that predicted the phase pattern that, when applied to the beam, would allow the light to reach some other chosen position. After applying that phase pattern, they repeated the process to maneuver the light to the next position. The team now plans to build a 3D crystal and add additional cameras to steer light in higher-dimensional materials. The method can be used in devices ranging from chip-based lasers to quantum computers to photonic circuits…read more. Open Access TECHNICAL ARTICLE 

 Credit: University of Twente

Posted in Photonic crystals and tagged , , , .

Leave a Reply