Optical fiber could boost power of superconducting quantum computers

Science Daily  March 24, 2021
In superconducting quantum processors, each qubit is individually addressed with microwave signal lines that connect room-temperature electronics to the cryogenic environment of the quantum circuit. The complexity and heat load associated with the multiple coaxial lines per qubit limits the maximum possible size of a processor to a few thousand qubits. A team of researchers in the US (NIST, Boulder CO, University of Colorado) has introduced a photonic link using an optical fibre to guide modulated laser light from room temperature to a cryogenic photodetector, capable of delivering shot-noise-limited microwave signals directly at millikelvin temperatures. By demonstrating high-fidelity control and readout of a superconducting qubit, they showed that this photonic link can meet the stringent requirements of superconducting quantum information processing. Leveraging the low thermal conductivity and large intrinsic bandwidth of optical fibre enables the efficient and massively multiplexed delivery of coherent microwave control pulses, providing a path towards a million-qubit universal quantum computer…read more. TECHNICAL ARTICLE

Photonic link concept. Credit: Nature volume 591, pages575–579(2021)

Posted in Quantum computer and tagged , .

Leave a Reply