Quantum-entangled light from a vibrating membrane

Phys.org  March 31, 2020
Optical quantum states propagate with ultralow attenuation and resilient to ubiquitous thermal noise. Mechanical systems are envisioned as versatile interfaces between photons and a variety of solid-state quantm information processing platforms. Researchers in Denmark generated entanglement between two propagating optical modes by coupling them to the same cryogenic mechanical system. The entanglement persisted at room temperature. They verified the inseparability of the bipartite state and fully characterized its logarithmic negativity by homodyne tomography. Combined with quantum interfaces between mechanical systems and solid-state qubit processors, this paves the way for mechanical systems enabling long-distance quantum information networking over optical fiber networks…read more. Open Access TECHNICAL ARTICLE

Posted in Quantum science and tagged , .

Leave a Reply