Tunable ultrasound propagation in microscale metamaterials

MIT News  November 20, 2024 Challenges in miniaturizing and characterizing acoustic metamaterials in high-frequency (megahertz) regimes have hindered progress toward experimentally implementing ultrasonic-wave control. A team of researchers in the US (MIT, Kansas City National Security Campus) presented an inertia design framework based on positioning microspheres to tune responses of 3D microscale metamaterials. They demonstrated tunable quasi-static stiffness by up to 75% and dynamic longitudinal-wave velocities by up to 25% while maintaining identical material density. The researchers explored the tunable static and elastodynamic property relation. According to the researchers their design framework expands the quasi-static and dynamic metamaterial property space […]

‘Shear sound waves’ provide the magic for linking ultrasound and magnetic waves

Phys.org  March 29, 2024 An international team of researchers (Japan, Austria, Spain) observed strong coupling between magnons and surface acoustic wave (SAW) phonons in a thin CoFeB film constructed in an on-chip SAW resonator by analyzing SAW phonon dispersion ant crossings. They used a nanostructured SAW resonator design that allowed them to enhance shear-horizontal strain. This type of strain couples strongly to magnons. Their device design provided the tunability of the film thickness with a fixed phonon wavelength, which was a departure from the conventional approach in strong magnon-phonon coupling research. They detected a monotonic increase in the coupling strength […]