Phys/org December 16, 2024 Field-effect transistor (FET)-based electronic biosensing platforms are particularly attractive due to their sensitivity, fast turn-around time, potential for parallel detection of multiple pathogens, and compatibility with semiconductor manufacturing. However, scalability multiplexed biofunctionalization, nanoscale precision for immobilizing different types of pathogen-specific bioreceptors, are unmet. An international team of researchers (USA – New York University, SUNY Downstate Health Sciences University, industry, Italy) proposed a paradigm shift in FET biofunctionalization using thermal scanning probe lithography (tSPL) with a thermochemically sensitive polymer which could be spin-coated on fully fabricated FET chips, making this approach applicable to any FET sensor material […]