Creating a broadband diffractive graphene orbital angular momentum metalens by laser nanoprinting

Phys.org  October 11, 2023 Orbital angular momentum (OAM) generators based on metasurfaces can achieve ultracompact designs. However, they generally have limited working bandwidth and require complex designs and multistep time-consuming fabrication processes. Researchers in Australia designed broadband graphene OAM metalenses with flexibly controlled topological charges using the detour phase method and fabricated using ultrafast laser nanoprinting. The experimental results agreed well with the theoretical predictions, which demonstrated the accuracy of the design method. The broadband graphene OAM metalenses have broad applications in miniaturized and integrated photonic devices enabled by OAM beams… read more. Open Access TECHNICAL ARTICLE 

Free-space nanoprinting beyond optical limits to create 4D functional structures

Phys.org October 7, 2023 Femtosecond laser–based technique called two-photon polymerization (TPP) has emerged as a powerful tool for nanofabrication and integrating nanomaterials. However, challenges persist in existing 3D nanoprinting methods, such as slow layer-by-layer printing and limited material options due to laser-matter interactions. An international team of researchers (USA – Purdue University, Germany, UK) has developed free-space nanopainting using an optical force brush (OFB) which enabled precise spatial writing paths, instantaneous adjustment of linewidths and concentrations, and unrestricted resolution beyond optical limits. OFB allowed rapid aggregation and solidification of radicals, resulting in narrower lines at lower polymerization thresholds and enhanced […]