Phys.org September 30, 2024 An international team of researchers (Italy, Germany, Sweden, Japan) developed a double-strand hydrophobic PVDF-HFP/hydrophilic PAN nanofibers yarn by electrospinning and twisting techniques like the hydrophobic/hydrophilic pattern of desert beetles and water self-propulsion property of spider silks. The double-strand cooperation approach allowed for water deposition on hydrophobic PVDF-HFP segment and transport under the asymmetric capillary driving force of hydrophilic PAN segment speeding up the aggregation and growth of droplets. They optimized the effects of the composition and the diameter ratio of the two primary yarns for boosting fog collection performance. The double-strand anisotropic yarn provided an effective […]
Tag Archives: Nanofiber
Researchers construct molecular nanofibers that are stronger than steel
MIT News January 25, 2021 Small-molecule self-assembly is an established route for producing high-surface-area nanostructures with readily customizable chemistries and precise molecular organization. The whole structure falls apart when you remove water, particularly when any kind of external force is applied. An international team of researchers (USA – MIT, Argonne National Laboratory, France) has shown that a small-molecule platform, the aramid amphiphile overcomes these dynamic instabilities by incorporating a Kevlar-inspired domain into the molecular structure. Strong, anisotropic interactions between aramid amphiphiles suppress molecular exchange and elicit spontaneous self-assembly in water to form nanoribbons with lengths of up to 20 micrometres. […]