Microscopic chains that mimic DNA

Phys.org  November 29, 2022 DNA conformation is well understood for biological processes. An international team of researchers (Austria, Poland, Italy) focused on chains interlocking the rings and observed their behavior and how they could be used to design innovative materials. They showed that circular polycatenanes have physical and geometrical properties very similar to those of double stranded DNA rings. They demonstrated that the connection of local and global properties holds for these structures too, that is there is a connection between what occurs in a part of the structure and in its whole. The amount of twist of the polycatenanes […]

Using machine learning to infer rules for designing complex mechanical metamaterials

Phys.org  November 23, 2022 Combinatorial problems arising in puzzles, origami, and (meta) material design have rare sets of solutions, which define complex and sharply delineated boundaries in configuration space. The boundaries are difficult to capture with conventional statistical and numerical methods. Researchers in the Netherlands have shown that convolutional neural networks can learn to recognize these boundaries for combinatorial mechanical metamaterials, down to the finest detail, despite using heavily undersampled training sets, and can successfully generalize. According to the researchers even if machine learning is typically a “black box” approach, it can still be very valuable for exploring the design […]

Creating an artificial material that can sense, adapt to its environment

Phys.org  November 2, 2021 A team of researchers in the US (University of Missouri, University of Chicago) has developed an artificial material that uses a computer chip to control or manipulate the processing of information that’s needed to perform the requested actions, then uses the electrical power to convert that energy into mechanical energy. The material incorporates three main functions also displayed by materials found in nature—sensing; information processing; and actuation, or movement. They control how the material responds to changes in external stimuli found in its surroundings. According to the researchers their approach, built on symmetries and conservation laws, […]

A new platform to stretch 2D materials

Nanowerk  June 17, 2020 As the electronic and optical properties of 2D materials can be controlled by mechanical deformations of their crystal structure, strain engineering can be used to modify their electronic properties. Researchers in Spain have developed thermal strain actuators on top of polypropylene substrates to control the biaxial strain in atomically thin MoS2 layers. The actuators can reach a maximum biaxial strain of 0.64 % and reliably modulated at frequencies up to 8 Hz. The strain levels can be varied all the way from 0% to 0.6% with a negligible spatial drift. They demonstrated the operation of the […]

Artificial intelligence ARTIST instantly captures materials’ properties

Science Daily  January 30, 2019 An international team of researchers (Finland, Denmark, Germany) has developed and trained the architecture ARTIST, made of three different neural network architectures: multilayer perceptron (MLP), convolutional neural network (CNN), and deep tensor neural network (DTNN), to predict molecular excitation using the coordinates and charges of the constituent atoms of each molecule as input. In demonstration they scanned the structures of 10k previously unseen organic molecules and obtained their spectra predictions to identify molecules for potential applications. The research has the potential to speed up the development of flexible electronics, produce better batteries and catalysts and […]