Energy-saving computing with magnetic whirls

Phys.org  September 16, 2024 Magnetic skyrmions are promising candidates for reservoir computing systems due to their enhanced stability, non-linear interactions and low-power manipulation. Traditional spin-based reservoir computing has been limited to quasi-static detection or real-world data must be rescaled to the intrinsic timescale of the reservoir. An international team of researchers (Germany, The Netherlands, Norway) addressed this challenge by time-multiplexed skyrmion reservoir computing, that allowed for aligning the reservoir’s intrinsic timescales to real-world temporal patterns. Using millisecond-scale hand gestures recorded with Range-Doppler radar, they fed voltage excitations directly into their device and detected the skyrmion trajectory evolution. This method was […]

Researchers achieve breakthrough in silicon-compatible magnetic whirls

Phys.org  February 20, 2024 Antiferromagnets hosting real-space topological textures are promising platforms to model fundamental ultrafast phenomena and explore spintronics. However, as they are epitaxially fabricated on specific symmetry-matched substrates, preserving their intrinsic magneto-crystalline order, curtails their integration with dissimilar supports, restricting the scope of fundamental and applied investigations. An international team of researchers (UK, Switzerland, Singapore) circumvented this limitation by designing detachable crystalline antiferromagnetic nanomembranes of α-Fe2O3. They showed that flat nanomembranes host a spin-reorientation transition and rich topological phenomenology. They demonstrated the reconfiguration of antiferromagnetic states across three-dimensional membrane folds resulting from flexure-induced strains. They combined these developments […]