Combining diamond and lithium niobate as a core component for future quantum technologies

Nanowerk  December 15, 2023 Negatively charged group-IV color centers in diamond are promising candidates for quantum memories as they combine long storage times with excellent optical emission properties and an optically addressable spin state. However, as a material, diamond lacks the many functionalities needed to realize scalable quantum systems. Thin-film lithium niobate (TFLN), in contrast, offers several useful photonic nonlinearities, including the electro-optic effect, piezoelectricity, and capabilities for periodically poled quasi-phase matching. Researchers at Stanford University have presented highly efficient heterogeneous integration of diamond nanobeams containing negatively charged silicon-vacancy (SiV) centers with TFLN waveguides. They observed greater than 90% transmission […]

Photonics researchers report breakthrough in miniaturizing light-based chips

Nanowerk  August 27, 2020 Researchers at the University of Rochester made an important step towards miniaturizing functional components on thin-film lithium niobate (LN) platform by developing high-speed LN electro-optic modulators, based upon photonic crystal nanobeam resonators. The devices exhibit a significant tuning efficiency, broad modulation bandwidth of 17.5 GHz, all with a tiny electro-optic modal volume. The modulators enable efficient electro-optic driving of high-Q photonic cavity modes in both adiabatic and non-adiabatic regimes and allow electro-optic switching at 11 Gb s−1 with a bit-switching energy as low as 22 fJ. The demonstration provides a crucial foundation for realizing large-scale LN […]