The perfect trap: a new way to control the polarization of light

Phys.org  January 19, 2022 An international team of researchers (Germany, UK, Scotland, Switzerland) has demonstrated that the Kerr effect in a high-finesse Fabry-Pérot resonator can be utilized to control the polarization of a continuous wave laser. They showed that a linearly polarized input field is converted into a left- or right-circularly-polarized field, controlled via the optical power. The observations are explained by Kerr-nonlinearity induced symmetry breaking, which splits the resonance frequencies of degenerate modes with opposite polarization handedness in an otherwise symmetric resonator. According to the researchers in the future one could arrange many of these devices onto a photonic […]

A trillion turns of light nets terahertz polarized bytes

Phys.org  October 19, 2020 Ultrafast nanophotonics is an emerging research field aimed at the development of nanodevices capable of light modulation with unprecedented speed. An international team of researchers (Italy, USA – Rice University) demonstrated that the inhomogeneous spacetime distribution of photogenerated hot carriers induces a transient symmetry breaking in a highly symmetric plasmonic metasurface. The process is fully reversible and results in a broadband transient dichroism with a recovery of the initial isotropic state in less than 1 ps, overcoming the speed bottleneck caused by slower (electron–phonon and phonon–phonon) relaxation processes. Their results pave the way to ultrafast dichroic devices […]