Researchers demonstrate secure information transfer using spatial correlations in quantum entangled beams of light

Phys.org  June 5, 2023 The ability to use the temporal and spatial degrees of freedom of quantum states of light to encode and transmit information is crucial for a robust and efficient quantum network. However, the potential offered by the large dimensionality of the spatial degree of freedom remains unfulfilled, as the necessary level of control required to encode information remains elusive. Researchers at the University of Oklahoma encoded information in the distribution of the spatial correlations of entangled twin beams by taking advantage of their dependence on the angular spectrum of the pump needed for four-wave mixing. They showed […]

New approach to information transfer reaches quantum speed limit

Phys.org  August 5, 2021 A team of researchers in the US (University of Maryland, University of Colorado) designed a quantum protocol that reaches the theoretical speed limits for certain quantum tasks. In the new protocol, data stored on one qubit is shared with its neighbors using entanglement. The qubits work together to spread it to other sets of qubits. Because more qubits are involved, they transfer the information even more quickly. This process can be repeated to generate larger blocks of qubits that pass the information faster and faster. They found that the snowballing qubits speed along the information at […]