A new catalyst can turn methane into something useful

MIT News  December 4, 2024 Anthropogenic methane emissions, particularly from diffuse and dilute sources, pose a significant challenge for oxidation and valorization as existing methane oxidation routes rely on high temperatures or pressures. Researchers at MIT found that the catalytic coupling of alcohol oxidase with the iron-modified ZSM-5 (Fe-ZSM-5) zeolite catalyst, created a tandem methanotrophic system that partially oxidized methane at ambient temperatures and pressures. They showed that methane-to-formaldehyde selectivity could exceed 90% at room temperature. The generated formaldehyde was rapidly incorporated into a growing urea polymer. According to the researchers their work presents a sustainable route for methane oxidation… […]

Scientists discover a new type of porous material that can store greenhouse gases

Phys.org  April 29, 2024 Researchers in the UK have developed a two-step, hierarchical synthesis that assembled a trigonal prismatic organic cage into a more symmetric, higher-order tetrahedral cage. Both the preformed [2+3] trigonal prismatic cage building blocks and the resultant tetrahedral [4[2+3]+6]cage molecule were constructed using ether bridges. This strategy afforded the tetrahedral cage molecule excellent hydrolytic stability that was not a feature of more common dynamic cage linkers. Despite its relatively high molar mass, tetrahedral cage exhibited good solubility and crystallized into a porous superstructure. By contrast, the [2+3] building block was not porous. The tetrahedral cage molecule showed […]