New materials and techniques show promise for microelectronics and quantum technologies

Phys.org  October 2, 2024 Low dimensional (LD) organic metal halide hybrids (OMHHs) have recently emerged as new generation functional materials with exceptional structural and property tunability. Despite the remarkable advances in the development of LD OMHHs, optical properties have been the major functionality extensively investigated for most of LD OMHHs developed to date, while other properties such as magnetic and electronic properties, remain significantly under-explored. An international team of researchers (USA – Florida State University, North Carolina State University, UCLA, Israel) describe the characterization of the magnetic and electronic properties of a 1D OMHH, organic-copper (II) chloride hybrid (C8H22N2)Cu2Cl6. Due […]

Materials scientists develop road map for designing responsive gels with unusual properties

Phys.org  August 22, 2024 Metallo-polyelectrolytes are versatile materials for applications like filtration, biomedical devices, and sensors, due to their metal-organic synergy. Their dynamic and reversible electrostatic interactions offer high ionic conductivity, self-healing, and tunable mechanical properties. However, the knowledge gap between molecular-level dynamic bonds and continuum-level material properties persist, largely due to limited fabrication methods and a lack of theoretical design frameworks. To address this gap researchers at Caltech developed a framework, combining theoretical and experimental insights, highlighting the interplay of molecular parameters in governing material properties. Using stereolithography-based additive manufacturing, they produced durable metallo-polyelectrolytes gels with tunable mechanical properties […]

Scientists develop new AI method to create material ‘fingerprints’

Phys.org  July 16, 2024 Understanding and interpreting dynamics of functional materials in situ is a challenge in physics and materials science due to the difficulty of experimentally probing materials at varied length and time scales. Although X-ray photon correlation spectroscopy (XPCS) is uniquely well-suited, spatial and temporal heterogeneity in material behavior can make interpretation of experimental XPCS data difficult. A team of engineers in the US (Argonne National Laboratory, University of Chicago) developed an unsupervised deep learning (DL) framework for automated classification of relaxation dynamics from experimental data without requiring any prior physical knowledge of the system. They demonstrated how […]

Towards next-gen functional materials: direct observation of electron transfer in solids

Science Daily  June 4, 2024 Nanoscale electron transfer (ET) in solids is fundamental to the design of multifunctional nanomaterials, yet its process is not fully understood. Researchers in Japan directly observed solid-state ET via a crystal-to-crystal process. They first demonstrated the creation of a robust and flexible electron acceptor/acceptor (A/A) double-wall nanotube crystal with a large window through the one-dimensional porous crystallization of heteroleptic Zn4 metallocycles with two different acceptor ligands. They constructed the electron donor incorporated-A/A nanotube crystal through the subsequent absorption of electron donor guests. They removed electrons from the electron donor guests inside the nanotube crystal through […]

Virtually unlimited solar cell experiments

EurekAlert  March1, 2021 Researchers in Japan used machine learning to screen hundreds of thousands of donor: acceptor pairs based on an algorithm trained with data from previously published experimental studies. Trying all possible combinations of 382 donor molecules and 526 acceptor molecules resulted in 200,932 pairs that were virtually tested by predicting their energy conversion efficiency. Basing the construction of our machine learning model on an experimental dataset drastically improved the prediction accuracy. To verify this method, one of the polymers predicted to have high efficiency was synthesized in the lab and tested. Its properties were found to conform with […]