Untwisting plastics for charging Internet-of-things devices

Nanowerk  May 27, 2020 To use body heat to charge some types of micro-devices and sensors requires lightweight, non-toxic, wearable, and flexible thermoelectric generators. Researchers in Japan studied the thermoelectric properties of a highly conductive thiophene-based polymer, called PBTTT. They found that doping the polymer with a thin ion electrolyte gel improves conductivity and infiltrates the polymer successfully when a specific electric voltage is applied. Doping it with a critical amount of electrolyte untwists the highly twisted chain and creates links between its crystalline parts, improving electron conductivity. They are now looking into ways to optimize the thermoelectric performance of […]

Untwisting plastics for charging internet-of-things devices

Science Daily  April 16, 2020 To use body heat to charge some types of micro-devices and sensors lightweight, non-toxic, wearable, and flexible thermoelectric generators are required. Japan studied the thermoelectric properties of highly conductive thiophene-based polymer, called PBTTT. They doped the polymer with a thin ion electrolyte gel, which is known to improve conductivity that infiltrates the polymer successfully when a specific electric voltage is applied. They found that, without the electrolyte gel, the PBTTT chain is highly twisted. Doping it with a critical amount of electrolyte untwists the chain and creates links between its crystalline parts, improving electron conductivity. […]