Discovering nanomachines within living organisms: Cytochromes P450 unleashed as living soft robots

Phys.org  August 7, 2023 An international team of researchers (Israel, India) addressed the difference between regular 3D matter and the nanomachines in ‘living matters’ (e.g., the CYP450 enzymes), which oxidize an array of essential substrate molecules. Molecular dynamics simulations revealed that, unlike 3D materials, CYP450s are 4D nanomachines, in which the fourth dimension was a sensing mechanism whereby the protein responds to an initial stimulus of substrate entrance and performs an autonomous chain of events (the catalytic cycle), which leads to substrate oxidation. They found that stimulus was the binding of a substrate molecule that eventually underwent oxidation in a […]

Soft robot detects damage, heals itself

Science Daily  December 7, 2022 Researchers at Cornell University have introduced damage intelligent soft-bodied systems via a network of self-healing light guides for dynamic sensing (SHeaLDS). Exploiting the intrinsic damage resilience of light propagation in an optical waveguide, in combination with a tough, transparent, and autonomously self-healing polyurethane urea elastomer, SHeaLDS enabled damage resilient and intelligent robots by self-healing cuts as well as detecting this damage and controlling the robot’s actions accordingly. With optimized material and structural design for hyperelastic deformation of the robot and autonomous self-healing capacity, SHeaLDS provided reliable dynamic sensing at large strains with no drift or […]