Physicists make square droplets and liquid lattices

Nanowerk  September 15, 2021 To study if the non-equilibrium structures can be controlled or be useful researchers in Finland subjected combinations of oils with different dielectric constants and conductivities to an electric field. When an electric field turned on over the mixture, electrical charge accumulated at the interface between the oils shearing the interface out of thermodynamic equilibrium. The liquids were confined into a thin, nearly two-dimensional sheet taking various droplets and patterns. The droplets could be made into squares and hexagons with straight sides. The two liquids could be also made to form into interconnected lattices, grid patterns that […]

Just by changing its shape, scientists show they can alter material properties

Nanowerk  September 13, 2021 An international team of researchers (USA – Argonne National Laboratory, University of Chicago, Israel) explored confined transport using a patterned structure in titania films, with feature sizes of 11–20 nm. They described how confinement changes the competing charge transport mechanisms, the patterned antidot array leads to displacement fields and confines the charge density that results in modified and emergent electron transport with an increase in conductivity. This emergent behavior can be described by considering electron interference effects. Characterization of the charge transport with electron holography and impedance spectroscopy, and through comparison with modeling, showed that nanoscale […]

Researchers reveal a novel metal where electrons flow with fluid-like dynamics

Phys.org  September 6, 2021 An international team of researchers (USA -Boston College, Florida State University, UT Dallas, Switzerland) found that a strong interaction between electrons and phonons alters the transport of electrons from the diffusive, or particle-like, to hydrodynamic, or fluid-like, regime in a synthesis of Niobium and Germanium (NbGe2). Electrical resistivity measurements showed a higher-than-expected mass for electrons, and X-ray diffraction revealed the crystal structure of the material. The mass of electrons in all trajectories was three times larger than the expected value. The strong electron-phonon interaction was responsible for the heavy electron behavior. In future work the team […]

Researchers use organic semiconductor nanotubes to create new electrochemical actuator

Phys.org  September 3, 2021 To improve the movement and response time for electrochemical actuator devices that operate in liquid a team of researchers at the University of Houston has developed electrochemical actuator that uses specialized organic semiconductor nanotubes (OSNTs). The device demonstrated excellent performance, low power consumption/strain, a large deformation, fast response, and excellent actuation stability. The enormous effective surface area of the nanotubular structure which facilitates the ion transport and accumulation results in high electroactivity and durability. The work provides new opportunities for next-generation actuators that can be utilized in artificial muscles and biomedical devices…read more. TECHNICAL ARTICLE

In a first, scientists capture a ‘quantum tug’ between neighboring water molecules

Phys.org  August 25, 2021 An accurate description of the ultrafast vibrational motion of water molecules is essential for understanding the nature of hydrogen bonds and many solution-phase chemical reactions. An international team of researchers (USA – SLAC National Accelerator Laboratory, UC Davis, University of Nebraska, Stanford University, Sweden) measured the ultrafast structural response to the excitation of the OH stretching vibration in liquid water with femtosecond temporal and atomic spatial resolution using liquid ultrafast electron scattering. They observed a transient hydrogen bond contraction of roughly 0.04 Å on a timescale of 80 femtoseconds, followed by a thermalization on a timescale of […]

Lightweight composite material inspects itself: Changes in color indicate deformations

Science Daily  August 23, 2021 An international team of researchers (Switzerland, UK) developed a new type of laminate that changes color as soon as the material is deformed. The laminate is composed of alternating layers of a plastic polymer and artificial nacre or mother-of-pearl and is modelled on the biological example of the mussel shell. It consists of glass platelets arranged in parallel, which are compacted, sintered, and solidified using a polymeric resin making it extremely hard and break-resistant. The second layer consists of a polymer and an indicator molecule synthesised specifically for this application. The molecule is activated as […]

Scientists Discover How to Make Glass So Hard, It Can Even Scratch Diamond

Science Alert  August 13, 2021 An international team of researchers (China, Sweden, USA – Harvard university, Germany, Russia) has discovered the critical proportion of crystallized and amorphous carbon needed to create a glass with remarkable properties that won’t weaken under intense pressure. By subjecting spheres of carbon atoms to intense pressure and baking at temperatures between 1,000 and 1,200 degrees Celsius they obtained glassy materials dubbed AM – I, II and III. After tests they mapped the way the atoms bonded with one another, showing they all operated as a semiconductor on a level comparable with amorphous silicon. After Vickers […]

Concrete and the hard-core bacteria that stubbornly persist within

Phys.org  August 4, 2021 Researchers at the University of Delaware hypothesized that the microbial communities of concrete reflect those of the concrete components and that these communities change as the concrete ages. To show how microbial communities change over 2 years of outdoor weathering they used two sets of concrete cylinders, one prone to the concrete-degrading alkali-silica reaction (ASR) and the other having the risk of the ASR mitigated. After identifying and removing taxa that were likely laboratory or reagent contaminants, they found that precursor materials, particularly the large aggregate (gravel), were the probable source of ∼50 to 60% of […]

Exotic property of ‘ambidextrous’ crystals points to new magnetic phenomena

Phys.org  August 4, 2021 Researchers in Sweden used symmetry-based analysis and numerical computations to predict the existence of antichiral ferromagnetism—a kind of ferromagnetic ordering when both types of chirality (handedness) exist simultaneously and alternate in space. They predicted a fundamentally different magnetic ordering in tetrahedral ferromagnets. They showed that antichiral ferromagnetism can be observed in a class of crystals in which many minerals are formed naturally by studying magnetic ordering in the structure with tetrahedral crystal symmetry and used micromagnetic analysis to derive the new antichiral ordering. The proposed magnetic ordering might result in a rich family of magnetic phenomena […]

Molecular library of OLED host materials

Nanowerk  July 27, 2021 OLED pixels normally consist of multiple layers which ensure, for example, that electrons can travel in the pixel with as little resistance as possible. The fine-tuning of the layer properties, for example, electron mobility or the emitted wavelength (color of the light), is a complex task. An international team of researchers (South Korea, Ukraine, Belgium, Germany) compared a wide range of computer-simulated and experimentally measured properties of OLED thin films, trying to understand whether OLED design can be guided solely by computer. They established a molecular library of typical OLED materials to streamline the design of […]